Leveraging on its expertise in designing, composing, shaping and firing ceramics, Imerys Ceramics develops kiln furniture solutions for a wide range of technical ceramics manufacturings. These kiln furniture solutions are designed to fit the needs of several industries:

• car
• electrical/electronics
• medical
• wear parts

Our wide range of high quality body compositions (silicon carbide, cordierite, mullite, alumina and zirconia) is a solid cornerstone to the custom-building of the required kiln furniture properties.

Each solution is tailored to your needs thanks to our state-of-the-art design office.
Imerys Ceramics kiln furniture offers a large range of solutions for box-saggars:

- traditional with high performances
- combination of lib and ring – called “combo” – to increase flexibility and life time
- with specified “insert” to maintain pieces in right position during firing and keep the fired dimensions or avoid bending
- stackable setters with tailored ribs for product positioning

We have a wide range of standard dimensions of kiln furniture, and we produce all dimensions on request. We can also provide specific formulations as cordierite/spinel of kiln furniture depending on your needs. For all specific inquiries, we are used to work with Non Disclosure Agreements.

Imerys Ceramics kiln furniture offers a large range of solutions for batts and beams/props to build your own firing structure. We are extremely sensitive to provide you:

- low and very low thermal mass
- very precise and stable geometric dimensions
- long life-time
- high resistance to loading

Ask us for all any new specific need related to dimensions. Thanks to the most advanced shaping process, we will provide you a tailor-made solution. We are used to work with Non Disclosure Agreements.
FULL EXPERTISE

### APPLICATIONS	MATERIALS	BUILDING	ELECTRICAL	AUTOMOTIVE
Fixed parts | Stoneware | Cordierite | Steatite | Alumina | Cordierite | Alumina | RSIC
Typical parts | Chimney tubes & pipes | Heating supports | Connectors, fuses, insulating components | Catalyst supports | Spark-plugs | Diesel particle filters
Maximum temperature (°C) | 1300 | 1350 | 1650 | 1450 | 1650 | 1450
BATTS | Cornull C1E | Aptakorit CME | Aptakorit LS | Aptakorit CM1 | Aptakorit LS | Aptakorit CM1 | Apatkor 80 | Apatkor 85 | Apatkor 99 | SC 100 RG | Apatasinit
BOX & RING-SAGGARS | SC 90S - Apatasinit | SC 100 RG | Apatasinit | SC 100RG | - | Apatasinit | Apatkor S | Apatasinit | Apatasinit | Apatkor S | Apatasinit | Apatasinit
PUSHER BATTS | Apatkorit CM1 | Apatkorit LS | Apatkorit LS | SC 100 RG | Apatkorit CM1 | Apatkorit CM1
BEAMS | SC 90S - Apatasinit | SC 100 RG | Apatasinit | SC 100RG | - | Apatasinit | Apatasinit | Apatasinit | Apatasinit | Apatasinit | Apatasinit
PROPS - LEGS - PINS - SPACERS | Cornull C1E - Apatakorit CME - Apatakorit CM1 | Apatkorit CM1 | Apatkorit CM1 | SC 100 RG | Apatkorit CM1 | Apatkorit CM1
INSERTS | - | - | - | Apatasinit | Apatasinit

* : Mullite coated

### APPLICATIONS	CATALYST FILTRATION	GRINDING MEDIA	WEAR - CHEMICAL - BALLISTIC RESISTANCES	FOUDNRY	KILN CONSTRUCTION
Fixed parts | Alumina | Vitrified bounded abrasives | Zirconium oxide | Alumina | Zirconium oxide | Mullite | Clay-bonded SiC | Mullite
Typical parts | Catalyst carriers & membranes | Wheels | Balls | Seals, nozzles, pistons, armours,... | Molten metal filters | Tubes & Rollers
Maximum temperature (°C) | 1400 | 1300 | 1650 | 1650 | 1250 | 1450 | 1600
BATTS | Apatasinit | SC 100 RG | Apatkor 99 | Apatkarb 70 | Apatkor 85 | Apatkor 85 | Cornull C1E | Apatkorit CM1 | Apatkorit CM1 | SC 100 RG | Apatasinit
BOX & RING-SAGGARS | Apatasinit | SC 100 RG | Apatkarb 70 | Apatkor 85 | Apatasinit | Apatasinit | SC 100 RG | Apatasinit | Apatasinit | Apatasinit | Apatasinit | Apatasinit
PUSHER BATTS | Apatkorit CM1 | Apatkorit CM1 | SC 100 RG | Apatasinit | Apatasinit
BEAMS | SC 90S - Apatasinit | SC 100 RG | Apatasinit | SC 100RG | - | Apatasinit | SC 100 RG
PROPS - LEGS - PINS - SPACERS | Apatkorit CME | Apatkorit CM1 | SC 100 RG | Apatasinit | Apatasinit
PIN-RODS | - | - | - | - | - | - | SC 100 RG

* : Alumina coated

### APPLICATIONS	POWDERS CALCINATION	ELECTRONICS
Fixed parts | Li-ion | Pigments | Electronics | Luminescence | Various oxides | Various materials | X - Zinc
Typical parts | - | - | - | - | - | - | MLCC | Piezo | Soft ferrites
Maximum temperature (°C) | 1200 | 1300 | 1400 | 1300 | 1400 | 1400 | 1450
SETTERS | Apatkor 99 | G8 | F3 | F3XX | Apatkorit CM1 | Apatkorit LS | Apatkorit CME | Apatkorit CM1 | Apatkorit CM1 | Apatkorit CM1 | Apatkorit CM1 | Apatkorit CM1
BOX & RING-SAGGARS | Apatkorit CME | Apatkorit CM1 | Apatkorit LS | Apatkorit CME | Apatkorit CM1 | Apatkorit CM1
PUSHER BATTS | Apatkor 80 | Apatkor 80
STRUCUTRE | - | - | - | - | Apatkor 80 | Apatkor 80

Butterfly RSiC Mullite coated
Multi Layers Ceramic Capacitors (MLCC) fired at 1280°C

Problem
Avoid bending of the current “spaghetti”-rack systems (mullite) with quite complicated manipulation.

Solution
Ultra-light RSiC-“Butterfly” rack system (Al_2O_3 engobed)
- assures stable flatness over service life with connector elements (Aptamull 84)
- allows easy handling of stackable system
- MLCC components placed onto Al_2O_3 or ZrO_2 setters

Diesel particle filters (DPF) honeycombs firing at 1450°C

Problem
Avoid DPF to lose geometric precision.

Solution
Combination of NSiC-batt with Aptamull 84 feet (LPIM):
- NSiC batts warrants flatness
- attached feet allows reduced costs

Spark-plugs fired at 1650°C

Problem
Avoid spark-plugs to bend or lose geometric precision during firing.

Solution
Use of mullite insert made with Aptamul 84 (LPIM):
- very precise hole dimensions to maintain vertical the spark-plugs during firing
- fitted insert dimensions for existing box-saggars
- perfect for automatic handling related to loading and unloading of the spark-plugs
Our Solutions

<table>
<thead>
<tr>
<th>PRODUCT NAME</th>
<th>Cormull C1E</th>
<th>Aptakorit CME</th>
<th>Aptakorit LS</th>
<th>Aptakorit CM1</th>
<th>SC 99S</th>
<th>SC 100 RG</th>
<th>G8</th>
<th>F3</th>
<th>F3XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIAL GROUP</td>
<td>Cordierite / Mullite</td>
<td>Mullite / Alumina</td>
<td>Alumina</td>
<td>Mullite / Alumina</td>
</tr>
<tr>
<td>MAX. SERVICE TEMPERATURE (OXIDING) °C</td>
<td>1300</td>
<td>1350</td>
<td>1380</td>
<td>1350</td>
<td>1500</td>
<td>1700</td>
<td>1500</td>
<td>1700</td>
<td>1700</td>
</tr>
<tr>
<td>THERMAL SHOCK RESISTANCE</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>CREEP RESISTANCE</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>CHEMICAL RESISTANCE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SHAPING PROCESS</td>
<td>Extrusion</td>
<td>Pressing</td>
<td>Pressing</td>
<td>Casting</td>
<td>Extrusion</td>
<td>Pressing</td>
<td>Pressing</td>
<td>Injection</td>
<td>Pressing</td>
</tr>
<tr>
<td>APPARENT DENSITY</td>
<td>g cm⁻³</td>
<td>2.05</td>
<td>2.04</td>
<td>1.84</td>
<td>2.05</td>
<td>2.70</td>
<td>2.70</td>
<td>2.30</td>
<td>2.51</td>
</tr>
<tr>
<td>APPARENT POROSITY</td>
<td>%</td>
<td>22.0</td>
<td>22.0</td>
<td>30.0</td>
<td>22.0</td>
<td>20.0</td>
<td>17.0</td>
<td>20.0</td>
<td>23.0</td>
</tr>
<tr>
<td>MOR 3-points</td>
<td>MPa</td>
<td>19.0</td>
<td>13.5</td>
<td>13.0</td>
<td>19.0</td>
<td>11.0</td>
<td>8.0</td>
<td>34.0</td>
<td>9.0</td>
</tr>
<tr>
<td>THERMAL EXPANSION COEFFICIENT (1000 °C) x10⁻⁶ K⁻¹</td>
<td>2.8</td>
<td>2.1</td>
<td>1.8</td>
<td>2.3</td>
<td>5.6</td>
<td>5.2</td>
<td>5.5</td>
<td>5.0</td>
<td>8.0</td>
</tr>
<tr>
<td>HIGH TEMPERATURE CREEP</td>
<td>mm</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.59</td>
<td>-</td>
<td>0.29</td>
<td>0.70</td>
</tr>
<tr>
<td>CONDITIONS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY</td>
<td>W / m K</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPECIFIC HEAT COEFFICIENT</td>
<td>J / kg K</td>
<td>900</td>
<td>900</td>
<td>900</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CHEMICAL COMPOSITION</td>
<td>%</td>
<td>38.0</td>
<td>38.0</td>
<td>41.0</td>
<td>40.0</td>
<td>84.0</td>
<td>83.0</td>
<td>86.0</td>
<td>82.0</td>
</tr>
<tr>
<td>PHASE CONTENT</td>
<td>Alumina</td>
<td>%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>55.0</td>
<td>-</td>
<td>25.0</td>
</tr>
<tr>
<td>Mullite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cordierite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spinel</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SiC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxides</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Free Si</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(1) : measured at 1250°C (1250°C/4h/10MPa)
(2) : measured at 1700°C (1700°C/10h/no load)
Teams dedicated to technical ceramics manufacturing
Thanks to a global commercial structure and integrated logistics network, Imerys Ceramics is able to provide a high quality, cost-effective and reliable service to its customers, wherever they are in the world.

Serving customers worldwide